AD-A271 347

NPSCS-93-008

NAVAL POSTGRADUATE SCHOOL

LT

Monterey, California

Aiding Teachers in Constructing Virtual-Reality Tutors
Neil C. Rowe & Francius Suwono
July 1993
TECHNICAL REPORT

October 1, 1992 to July 1993

Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School
Monterey, California 93943

3-25418
\\\l\\i\l\l\ﬁ\\!\\\\%ﬂt&ﬂl‘\\m

Best _
Available

Copy

NAVAL POSTGRADUATE SCHOOL
Monterey, California

REAR ADMIRAL T. A. MERCER HARRISON SHULL
Superintendent Provost

This report was prepared with research funded by the Naval Research Funds provided by the Naval
Postgraduate School.

Reproduction of all or part of this report is authorized.

This report was prepared by:
AV L
, oene
NEIL C. ROWE
Associate Professor of
Computer Science
Reviewed by: Released by:
YUTAKA KANAYAMA® |
Associate Chairman for Dean of Research

Research

UNCLASSIFIED
SECUAITY CLASSWICATION OF TRIS PAGE.

REPORT DOCUMENTATION PAGE

a REPORT SECUR ASSIFITATIO T6. RESTRIC TIVE MARRINGS
UNCLASSIFIED
a SECUNR [ASS ON RUTROAITY 3. DISTRIBUTIOR/AVATCABILITY OF REPORT
B S TSN DS W RTINS SCRET App{ove_d fqr pub}nc_relcasc;
distribution is unlimited
2. PERFORMING ORGANTZATION REPORT NUMBER(S)) 154-T13)
NPSCS-93-008 Naval Postgraduate School
5a. NAME OF PERFORMING ORGANIZATION "OFFICE 7a. NAME OF MONITORING ORGANIZATION
omputer Science Dept. (1t applicable) ONR
Naval Postgraduate School &
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Monterey, CA 93943 San Diego, CA
Ba NENE OF FURDING/SPONSORIN e 5 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER |
if applicable) :
Naval Postgraduate School NPS DARPA 13 Project under AO 8939
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUN! ks
PROGRA PROJECT [TASK WORK UNIT,
ELEMENTNO. | NO. NO. ACCESSION NO.

Monterey, CA 93943

11. TITLE (Include Secunty Classification)

Aiding Teachers in Construciing Virtual-Reality Tutors

)
Neil C. Rowe & Francius Suwono

14. DATE OF REPORT (Year, Month, Day) | 15. PAGE ??UNT
930719

| 2 COSATI CODES . : . ; . -~

&0 GROUP SUB.GROUP tutoring, computer-aided instruction, means-ends analysis, heuristic

| search, virtual reality, Prolog, reactive environments, declarative specifica-
tion

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

19. ABSTRACT (Continue on reverse if necessary and identify by block number}))
Teachers need different tools for constructing virtual realities than do professional programmers. Teachers build-

ing tutoring environments need only and should only provide declarative and nonquantitative specification of the
application, as such information is sufficient to build powerful prototypes or even products when exploited prop-
erly. We describe our METUTOR tutor-generation system for sequential-action skills, which uses means-ends
analysis on a teacher’s declarative specification of a set of actions. METUTOR asks the teacher to specify condi-
tions for recommending actions, preconditions of actions, and expected and random consequences of actions.
METUTOR also asks the teacher to associate pictorial and/or aural representations with facts, and to specify how
and when to use them. METUTOR provides facilities for automatic resolution of interactions and conflicts be-
tween media objects. We show examples from a firefighting tutor and a pilot’s emergency tutor.

. CT
[UNCLASSIFIED/UNLIMITED D SAME AS RPT. [[] DTIC USERS

A
UNCLASSIFIED

Neil C. Rowe
DD FORM 1473, 84 MAR

UAL

83 APR edition may be used until exhausted
All other editions are absolete

22b(.18§E)PgSOg.3(In

Area Code)

"OFFEICE SYMBOL
e C§Rp

SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

Aiding Teachers in Constructing Virtual-Reality Tutors

Neil C. Rowe and Francius Suwono
Department of Computer Science
Code CS/Rp, U. S. Naval Postgraduate School
Monterey, CA USA 93943
rowe@cs.nps.navy.mil

Abstract

Teachers need different tools for constructing
virtual realities than do professional program-
mers. Teachers building tutoring environments
need only and should only provide declarative
and nonquantitative specification of the applica-
tion, as such information is sufficient to build
powerful prototypes or even products when
exploited properly. We describe our METU-
TOR tutor-generation system for sequential-
action skills, which uses means-ends analysis
on a teachers’s declarative specification of a set
of actions. METUTOR asks the teacher to
specify conditions for recommending actions,
preconditions of actions, and expected and ran-
dom consequences of actions. METUTOR also
asks the teacher to associate pictorial andfor
aural representations with facts, and to specify
how and when to use them. METUTOR pro-
vides facilities for automatic resolution of
interactions and conflicts between media
objects. We show examples from a firefighting
tutor and a pilot's emergency tutor.

1. Introduction

Virtual reality can enhance a wide range of educa-
tional simulations. For instance, military training
includes many specialized procedural skills for
emergencies, e.g. firefighting. Broad educational
application of virtual-reality ideas has been limited
by the necessary complexity of their implementa-
tion. Our METUTOR project tries to address this
problem by providing special tools for computer-
inexperienced teachers and instructors to develop
their own virtual-reality tutors for procedural skills.

An example of our target audience is an instructor
who trains Navy firefighting-team leaders.

Computer-inexperienced teachers often have trouble
giving algorithms for procedural skills, although
they can specify correct sequences of actions in par-
ticular circumstances. Furthermore, they wusually
cannot describe numerically or mathematically the
components of the virtual reality, as this often
requires sophisticated mathematics. This rules out
all but minimal three-dimensional modeling, and
usually requires a discrete representation of time.
But if teachers can indeed perform the skill they
wish to teach, they must know the best thing to do
next in any situation. This "local” knowledge is
close to the concept of declarative specification in
languages like Proiog, in which the programmer
specifies what things must be accomplished but not
entirely their order (4].

So our METUTOR project has devised an approach
that combines a simple language for specifying state
descriptions and discrete state changes, a simple
media-object (bitmap and audio) construction facil-
ity, and a way to relate state descriptions to media
objects. Our specification syntax is that of Prolog.
and our implementation is in Quintus Prolog. Our
state-change semantics {4] is based on means-ends
analysis with several of our own additions, and our
handling of media objects is suggested by tech-
niques of cartoon animation with several additional
features.

Means-ends analysis is a problem-solving technique
useful for a broad range of human problems, and
people often seem to use something like it in ever-
day activity. To automate it, we must identify a set
of possible discrete actions, and preconditions,
postconditions, and recommendation circumstances
for each action. Mean-ends specification of actions

A

L

permits a tutor to comment on the appropriateness
of student actions in solving a problem, since it
knows the possible reasons for them. We extend
basic means-ends analysis with context dependency
(so the same action has different preconditions or
results depending on other facts that are true when it
is applied). and most importantly, constrained ran-
dom changes to the states to provide an element of
unanticipated challenge to the student. All this
teacher-supplied action specification is local infor-
mation, and for most applications will be intuitive;
see section 3 for examples. What teacher errors in
specification do occur, as we have observed in forty
tutors written using the METUTOR system, are usu-
ally errors of omission not commission, for which
we have special debugging tools.

Means-ends analysis works by repeatedly comparing
the current state and the goal objectives, and then
selecting the highest-priority action recommended
for at least some of the differences. If the highest-
priority action cannot be done immediately, a recur-
sive subproblem ("precondition recursion”) is
created with goal the preconditions of the desired
action. If further differences between current state
and goal objectives remain after the desired action
has been performed, a new recursive subproblem
("postcondition recursion”) is created for the current
state. Although more sophisticated methods of plan-
ning have been developed in artificial intelligence,
means-ends is surprisingly broad in applicability and
robust. For instance, random occwrrences can be
taken in stride because means-ends constantly
recomputes what to do. Means-ends can exploit
well the automatic backtracking feature of software
like Prolog, so even if the teacher’s priorities for
actions are poor, analysis will eventually back up
and try something else. So means-ends is a good
choice for tutoring software that computer-
inexperienced teachers must write.

Using means-ends analysis means that virtual reali-
ties constructed with METUTOR are not just pas-
sive, but can advise the student. While the student
thinks, the tutor reasons hypothetically to find the
best sequence of actions to solve the problem from
the current state. Then if the student picks a subop-
timal action, the tutor can use 22 domain-
independent mal-rules (of which more than one
could apply to the same situation), exploiting this
hypothetical reasoning plus automatic backtracking,
to understand what the student is doing. Appropri-
ate tutoring is tied to each mal-rule. For instance:
--1f the student’s acuon does not change any-

thing, say so.

--If the original goal is unsolvable, say so and

Stop.

--If the student has five times avoided a cer-

tain best action, give a hint.

--If the student’s action’s name is similar to

the best action, give a hint.

--If the student’s action is the exact opposite

of the best action, give a hint.

--If the student’s action only makes sense by

misreading the current state slightly, point this

out.

--If the student’s action is unnecessary to

solve the problem, point this out.

--If the student has returned from a digression,

point out where and how they digressed. (A

digression is signalled by an action that, while

perhaps eventually needed, does not make the

problem easier 0 solve.)

--If the student picks a recommended action,

but that action is not of the highest priority,

analyze the justifications for both actions in

terms of differences in precondition chains in

the simplest terms.
Hypothetical reasoning and mal-rules have bec¢n
used in other procedure tutors, e.g. [2], but means-
ends permits especially general mal-rules. (Not to
be confused with the student mal-rules, 30 addi-
tional rules check for teacher errors like misspelled
words and impossible preconditions.)

2. Specification of graphics

A central objective of METUTOR is to help the
teacher set up a many-to-many mapping between
facts describing the virtual reality and media objects
depicting it. That is, a fact or facts will correspond
to media objects or objects, as in the more general
Prolog-based approach of [3]. Teachers must obtain
or construct images and sounds, and we provide
tools to facilitate this. For audio, the teacher will
specify a set of frequencies and amplitudes of those
frequencies as a function of time within a time
period, which permits a variety of simple noises.
For images we already provide a simple facility for
freehand line-drawing using the mouse, plus the
capability of reusing bitmap pictures from a library
{5). Regions can be drawn, moved, scaled, clipped.
filled, among other standard graphics operations.
When finished, the screen location of the bitmap
and its associated fact or facts are associated. Real-
istic images are not needed in many tutors for adult
students, since such students can understand meta-
phoric symbols; otherwise, a professional program-

mer could later improve an teacher’s images and
sounds. Figures 1 and 2 show example metaphoni-
cal displays.

The mapping between internal facts and media
objects can be many-to-many when the semantics of
the two is sufficiently different. For instance. a big
fire in a compartment on a Navy ship can be shown
by bitmaps of flames scattered across the picture.
Conversely, multiple facts may correspond to a sin-
gle image if some facts are necessary to explain oth-
ers. For instance, the facts that the oxygen has been
tested and the oxygen is safe can be displayed in a
single image, a dial reading "OK".

An object-oriented system, with inheritance and
defaults, is the obvious way to assign properties to
media objects. For instance for a firefighting tutor,
the instances of flames displayed on the screen can
inherit shape and color from an object representing
a single prototypical flame, but could override its
default size and screen-position attributes when the
fire is almost out. In general, a media object can
have these inheritable properties (some of which are
not yet implemented):

(1) a pointer to its display representation

(image or audio);

(2) a set of immediate generalizations (super-

concepls);

(3) size if an image or duration if audio;

(4) brightness if an image or loudness if audio

(maximum brightness in our implementation):

(5) color if an image (each has a single color

in our implementation);

(6) location on the screen if an image or start-

ing time if audio:

(7) orientation on the screen if an image;

(8) periodicity information if an intermittent

image or sound;

(9) contextual conditions under which it is to

be displayed (see below);

(10) overlay plane if an image (see below);

(11) a set of pointers to its subparts.
And pointers to these objects are stored in a table
whose retrieval keys are single facts or sets of facts.

METUTOR provides two ways to specify interac-
tions between media objects. First, as a simple
method for handling image overlap, the teacher can
specify occlusion order for image pairs. For
instance, the image of the medical corpman could
always be displayed occluding ("in front of") the
image of their patient, as in Figure 1. Typically,
movable objects should occlude setting-depicting

images, and people should occlude movable objects.
On the other hand. flames and smoke are more tran-
sparent, and should not occlude one another even if
their images overlap. so no occlusion-order
specification is needed for them. Images can have
holes in which to place other images. like an outline
of a tank with room to draw a water level within it.
(Simultaneous audio objects just have their signals
added. since sounds do not occlude.)

The second kind of interaction between media
objects that we provide for is contextual variation in
object graphical propertics. This is common. For
instance, only when the firefighters are at the fire
can they see flames; and then they are shown at the
center of the screen, otherwise to the right side. As
another example, if a fire team member gets injured.
that should reduce by one the number of fire team
members shown normally. This context dependency
differs from the oxygen-display example: The con-
text facts will be displayed normally, but their pres-
ence causes other facts to be displayed differently.
In general. the presence or absence of any fact
could affect the display of another.

Surprisingly. we discovered when we began imple-
menting the preceding ideas that some natural-
language output was essential. To some extent, we
can avoid it with metaphorical images and sounds,
like radiating lines over a person’s head to indicate
that they are angry, or sounds of people yelling.
But this can hurt clarity: Lines over a person’s head
could mean saintliness or a bad haircut. So we
always display a text box that completely describes
the cument state. This is essential for currently-
undisplayed facts (like what is happening at the fire
when you are not there), orders that are currently in
effect, descriptions of mental states, history, and so
on, as well as clarifying displayed information. To
facilitate natural-language output, we provide a
modifiable rule-based system for paraphrasing inter-
nal representations of state descriptors and actions.
We also let text to be drawn directly on the picture,
which allows labeling. A fact can be represented by
multiple pictures and/or multiple texts. like a picture
of a switch with labels on its positions.

Our current implementation is in Prolog with
Prowindows and uses bitmaps to hold all stored
images. The hardware is Sun Sparc workstations,
and this does impose performance limitations
because these machines are not designed for real-
time graphics. So we use bitmaps for all images
rather than drawing even simple shapes in rcal time.

Even bitmaps can take a second to load. So a tech-
nique for additional efficiency that we have explored
is to recompute certain combinations of bitmaps that
are commonly shown together, "compiling” them
into one big bimap which can be loaded more
quickly than the individuals.

The METUTOR framework extends easily to multi-
student virtual realities, as in replenishment at sea, a
skill which requires the cooperation of two ship
commanders [6]. In our implementation of this
tutor, each student runs a separate program copy
with its own goals, and each program writes into
and reads from a shared state file. Each program
repeatedly checks the state file before changing it;
whenever the file is changed, the other program
throws away its previous reasoning and begins
reanalyzing the situation with the new state.

3. Examples

Figure 1 shows an example from the tutor previ-
ously mentioned for fire team leaders on Navy
ships, based on the analysis of {7]. The text box is
on top, the graphical representation of the current
state is below, and the menu of actions to select is
in the lower nght. Figure 1 shows a tutoring ses-
sion during which the student ordered watching of
the fire area for reignition of the now-extinguished
fire, but he ordered it before emptying the compart-
ment of smoke, and has thereby caused the reflash
watchman to collapse from smoke inhalation. So
the student then directed the medical corpman to
give first aid to the casualty. In the default color
implementation, the lower-left shapes are light blue,
the water is green, the smoke is yellow, the medic
on the right has a red cross, the other people are
dark blue, and the other shapes are black. Note the
oxygen canister occludes the oxygen tester and the
medical corpman occludes the patient. The very
bottom of the text hox (the description of the
current state, almost ideniical to that of the previous
state described) has been obscured to permit seeing
some of the previous tutoring. Note that the tutor
lets students do foolish things like this sending une-
quipped people into smoke-filled compartments
because the visual consequences are clearer than
words, although the tutor does hint. Note also that

the tutor noticed that the student has returned from a

digression on their previous action.

Figure 2 shows an examplé from the tutor for emer-
gency fuel problems on F-4 aircraft [1]. It shows a
session in which the student (a pilot) is doing some-

thing useful. but not the most important action at
the moment, so the tutor confines itself to hints.
Since the name of the best action is similar to that
the student chose, a lexical confusion may have
occurred. Just four bitmaps. besides the text, were
used to create the entire picture; this was deliberate.
because real cockpits have easily-confusable
switches. Simple subroutines permitted separating
the shape and position specifications.

To illustrate declarative teacher specifications, here
are examples from the firefighting tutor as they actu-

ally appear.

start_state([location(repair locker),
raging(fire) smokey]).

goal(| verified(out(fire)),safe(gases),
safe(oxygen),not(equipped(team)),
not(smokey),not(watery),
not(watched(reflashing)),
not(unreplaced(casualty)),
not(treated(casualty)),
not(dead(casualty)),
debriefed(team),
deenergized(fire,area))).

The first two lines above specify that in the starting
state the fire team is in their repair locker, the fire is
raging, and the fire area is smokey. The remaining
lines specify that the student must achieve the fol-
lowing: the fire is verified to be out, the gases and
oxygen in the fire area are safe, the fire team in
unequipped, the fire area is neither smokey nor full
of water, no reflash watch is on, no unreplaced or
untreated or dead casualties are present, and the fire
area is deenergized.

recommended([out(fire)],extinguish).

recommended([not(present(casualty))},
[present(medical,corpman)],
direct_medical_corpman).

The first says that if you want the fire to be out, you
should extinguish it. The second says that if you
want a casualty to no longer be preseni, then if
there is a medical corpman present, you should
direct the corpman to handle the casualty.

precondition(extinguish,
{location(fire),raging(fire),
equipped(team),set(boundaries),
confronted(fire)]).

This says that to extinguish a fire, you must be at
the fire, the fire must be raging, the fire team must
be equipped. the boundaries of the fire must be set,
and you must be facing the fire.

deletepostcondition{(go(fire),
[location(repair,Jocker)]).

addpostcondition(extinguish,

. {out(fire),watery,smokey}).

addpostcondition(extinguish,
(not(deenergized(fire,area))),
[present(casualty),dead(casualty),
present(crater),raging(fire)],
*There is a big explosion!’).

The first definition says that if you go to the fire,
you are no longer at the repair locker. The second
says that when a fire is extinguished, the fire is out,
the area is watery, and the area is smokey. The last
definition says that in the special case where the stu-
dent tries to extinguish when power to the fire area
is on, a casualty is present and dead, a crater in the
floor is present, the fire is still raging. and the mes-
sage "There is a big explosion!" is printed. The last
definition overrides the second when both apply.

randchange(extinguish,|],
out(fire),raging(fire),0.3,
*Fire is still raging.’).
This says that 30% of the ume when a student tries
to extinguish a fire, they fail.

bmap(raging(fire),{location(fire)],
fire2,308,135,red).

This says that if the fire is raging and the fire team
is at the fire, the screen should show red flames
(whose bitmap is in file "fire2") with upper left
comer of the bitmap at (308,135). (The position
was automatically computed by the shape-
construction program when the flames were created
and situated in a dummy box.)

opclick(380,6,320,175,
[location(fire),smokey],desmoke).

This says that anytime the student clicks the left
mouse button in the region 320 pixels wide and 175
pixel high whose upper left comer is at (380.,6),
while at the same time the simulaton has the fire
team at the fire and the fire area is smokey, that
click means the student wants to desmoke.

draw_order(present_casualty,
present_medical_corpman).

draw_order(treated_casualty,
present_medical_corpman).

These say that the image of the medical corpman
should occlude images of the casualty and the
stretcher (the latter the "treatment”).

4. References

{1] M. Kang. "Pilot emergency tutoring system for F-4
aircraft fuel system malfunction using means-ends
analysis”, M.S. thesis, Department of Computer Science,
U.S. Naval Postgraduate School. Monterey CA. June
1990.

[2] R. Loftin, L. Wang, P. Baffes, and G. Hua. "An Intel-
ligent Training System for Space Shuttle Flight Controll-
ers”, Conference on Innovative Applications of Artificial
Inmelligence, Stanford CA, March 1989, 105-110.

[3] S. Matsuoka, S. Takahashi, T. Kamada, and A.
Yonezawa, "A general framework for bidirectional transla-
tion between abstract and pictorial data”, ACM TIS, 10, 4
(October 1992), 408-437.

[4] N. Rowe. Artificial Inelligence though Prolog.
Prentice-Hall, Englewood.Cliffs, New Jersey, 1988.

[S] F. Suwono, M.S. thesis, Dept. of Computer Science.
Naval Postgraduate School, June 1993.

[6] P. Salgado. "An intelligent computer-assisted instruc-
tion system for underway replenishment”, M.S. thesis,
Department of Computer Science, U.S. Naval Postgradu-
ate School, June 1989.

{7} S. G. Weingan, "Development of a shipboard damage
control fire team leader intelligent computer aided instruc-
tional tutoring system,” M.S. Thesis, Department of Com-
puter Science, U. S. Naval Postgraduate School, June
1986.

This work was sponsored by the the U. S. Naval Postgra-
duate School under funds provided by the Chief for Naval
Operations, and by the Defense Advanced Research Pro-
Jects Agency as part of the 13 Project under AO 8939.

'DTIC QUALITY INSPECIs!: v

. Aseession For -

' MT1S GRA&I T
DTIC TAB g, '

| Unarnounced 0.

- Justificatiom ______

| By

Distl‘ 1914
'; L1 :1_‘3 ition/
Avalimbil_ity C_odes

; JAvail and/ar
{Dint | Special

l

rY

|

e g o

1143

Jie3s0y

aey

e

IN0 AjjieA

191593 uebhxo 3se)
ushAxo 31593

soseb 3se)
Juswdynbs 9.03s
YoIem yse| 04 oS
S@}iepunoq 39S
YOI0M YSE| 04 9INDES
A3(ense> edejde.
AJ|ENS®) AOWS
J0D0| J4edes 06
81}y 06

pie 3S4}14 oAb

us {nbune
J93BM BJBW| IS

oousep
8Zjbiousep
J944q8p

8414 YyorOos

ino m. ELIE]

\\

‘3o sy aeqse] usbixo puw .von«ouonoov ST waI® B3 .vo.nu«.u!, ST 3N0 ST 8113 .A

v!ﬁ._"svo ST wEs) auou!. s¥ ..:" hoxolu -ﬁ A%
¥yuy¥¥N¥ypyyy ONI] MOU BIW BIOVJ OSOUL xyyyxyyyyyyy

‘%0
‘usudz00 TEOTPSE J08IIP O3 OSOUD NO

‘ejes 81 usHixo ouau oxe sesewb u:o-.ua ST OTpew b

u:o-o.un ST A3Tensed u:b ST 8x¥3 .83002 ST 8113 b

‘paddinbe s1 umey ‘Aasjen st 37 ‘dexouws st ¥ b

¥y yy¥¥uyxy¥yy -OUIJ HOU BIB SDVJ BSOYUL wxyxwxxxyxwy b

-eyoms oyl Aq swoozsno sesn uosasduyoien yserjex oyl b

‘wJOT2qep, uwyl mou Juwiaodwy sxom sY | b

«Sjousep, :JuUTY ® Ing ‘30| pi

‘YSIBM YSEIJOIX 308 O3 880UD nox| bk

"30 ST a931883 usbixo pue ﬁo:ouo:oc_u sy waxe 8x13| b

~vo.“u.nuo> ST 3InO ST 8x1} oucu st usbixo ‘sjms sxw seseb| |

u:o_.oun ST OIpewmt ‘INOC ST OITI :o«uuoo.n st 8xT3l b

‘paddinbs st umey ‘Aasjen st 37 ‘Aexoms 51 37| b

¥x¥yy¥x¥¥y¥uy - ONIJ MOU BI® uuuﬂu O88UL wyyxvy¥yuyxy| b

‘3e338q useq sa®my pInos 8113 o 03 ‘eDTOUD Is6q By JOU SEA
‘pezibasussp ST vex® 8ITI ‘POIITISA ST N0 ST 8IFF ‘eges 8T usbixo)

‘sges oxw sasedb ‘quessxd sy o1psw ‘jno ST 8xt3| H

.u&&:vo:g.uuﬂn::ﬁ.g:ﬂ..

«0 ST I9q38) usbixo pue ‘uoyjedoOT BT IMDOT aredex
usyn Jusudinbes ax03s 03 uorsTosp anoi eyl mou ses noik og X

|ewI0u 3500Q7348| 195
WD 1500Q7348] 19

dan Jeab bujpue| 19 ino
wop s suipen v | » umop
sue.i3~dols e - - (1]
JSuRIYTBuIM" [BuIR3u) Jas | UOSIIIB[THURLTIAJUID samod™an|en"|an; " 14a) :opﬁo an
|owJou 18 vao;koE?. no 1ea6~6uipUe)

JSURIITBU M (RUIOIU} 185 SRL]|
ua si0)es0ueb 388

0 sjojeisued 3es o uy syue}je
33 48 UR) ~dU)|43UBD - - wiou
bujm e auE Sua 13modTanjenany Qo Aluomu)

u0s1213("6UIM ™ |RU4I)
JSURITTOUIMT (BUIOIND J0S 1500qQ" _oe i e Uo(}23|as™ (aNJed

ine naf np
no .o
o RUOY T |PUIAI XD o u} a
.otcmb “Bujm” | BLIRIUY wiou

JSURIITOUIMT | RUIIIND 10S

cow_tv‘ TiIUBDTIRULD) {ewsou

WI0U U0 | AJUIB W™ :ooo ino dwinp~bulm
$)230f76u M (BUINIXS J0S o jewsou SUB4}—PIAO
130f vo 1y~ jeuiagu| _ _ u >oU>
$1230f"bujM" [vuIaIxe 205 1043U0D~6UIM ™ RUIIX " §O t,_oo% s JeusIou
- PQ 1s00gq” Zm: 19}udd Snoan.utcm:nmc_;
nO J8SUBIYT(RUIEING }0S - wc_z {ewJsou
4 19y~)19d no pqino pgino
4O 195UR.37(BUINIXG 18S 13jsURLITBUIMT | RUIII XS NPy _
Wou uas| 1500973431
110£7403u8O T (BUI0IX0 10S 1500Q~ Co_ [EIJEY] 1asuedy” _2:3 £}
228f uos) no papudIxa paienal sue43~dols
3I0fJ03uedT|BUINIXS J0S paldeijau 1
INC J9)SURI3 BUMTGY 305 u) 20137 |9n34 U v.o%ucowﬁv o jewiou
uh Jejsueiy BupuTg> 1es 19 5ue436UIM D 19 ! 1345UR13 "BUIM ™ jeuI

N0 3500Q714y61I"q> 88

s

¥ T ®
“sUex) PAAD BT ousu-cual uounuauuim:ﬁ— a3

‘tewzou s¥_dunp Buga oy3 ‘TewIou SY ONMM%I ybrx

..::o JUT ST uoTIDeTes Tenjax eyl vovcﬁno sy Tongex
‘pajoex3sex ST SUTQINY . uaa WX 8y} ‘TEWIOU ST 3800Q 4381

‘dn 81 aweb Huipuel SUY3 ‘IEWMIOU ST ISISURI] DUTM [OUISFUT

‘uo saw siojsasusb sy3 ’‘asjzued ST I8jsuexy ~buta”Teuzeixs

‘mIou st uostijel Dua TRUISIXS eyl ‘JIO ST IBFSUBIY [BUISIXS

‘lzou S¥ :o-ﬁuuoﬂl Jej3uUed TEUISIXS BYY ‘UT ST ISIXUBIY DUTM O

‘ur S¥ 3Iso0q uzmﬂu qo ayy ;._._" L onoumlagu?u qo

‘'ur 8t aewmod earTea TENg 3IFOT @ au3 ‘ur s3_3sooq_33e1_qo

‘U ST aszsuvI) mc.t. TeuIsIUT qo ,oun ‘ur 81 Jenod satea Tong qo

‘uy ST 3s00q TONZ QD 8Y3 ‘U S} [OIJUOD BUTA TBUISIXS GO

‘ur st Aousbreww™3so0q qo OY3 .vouno.“unﬁ ST 8SBOIDUT T8NJ [BUISIUT
‘peqEotput s Ajdwe"jou yuey” TeuIsIX® ‘PajedTpul ST Ajdwe Juey suplIsjued
‘Pe3EOTPUT ST pouosiIIel uOsSTIFS[HUBI IBJUSD ‘POIWOTPUT ST OSWEIDUT TenJ 118D
.8.30“& ST Spisaspun m:._"!aoudu .nosu ‘POTITIUSPT ST weTqoad|

‘pButwExs st (8nj” Teuasquy ‘POUTWSXS ST U] [BUISIXS

‘poutwEXe ST UE} SUTTISIUSD ‘PBUTIMXS BT UOSTIFS[HUEF I8USD)

‘poutumexs ST ToNnF 1180 'Gutrdtz ST AT

¥yux¥uxyyyyyy OOI] MOU BIW SOV BEBYUL yxyyyy¥¥yyyy

3% £13 sn 38T NG ‘SSOOUD PINOM I VUM JOU ST UOTIDE INOX

{UoT]0o® TemIou sanssexd asjsuel)l Duia 3188 8Y3 YITM JBYJ peasnjuod noi saey
‘X83USD IBFSUBIY DUTM TPUISIXS 188_O3 BSOUD NOXK

‘suBxy) paao st sanssexd Jezsuex) DUTM 8] pue

‘Tewmaou st dump Buga 8y3 ‘tewrou sy 3sooq IubII Byl

‘ATuoTjur ST uorIVBISsS TEnex ay3l ‘pepusixe 31 aqoad rengex eyl fg|

%%é%%%%%%%ﬁém

UNCLASSIFIED
SECURITY CIXSSFRATION OF THIS PAGE

Distribution List

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314 2

Library, Code 52
Naval Postgraduate School
Monterey, CA 93943 2

Center for Naval Analyses
2000 N. Beauregard Street
Alexandria, VA 22311 1

Director of Research Administration

Code 08

Naval Postgraduate School

Monterey, CA 93943 1

Mr. Russell Davis

HQ, USACDEC

Attention: ATEC-1M

Fort Ord, CA 93941 2

Dr. Neil C. Rowe, Code CSRp

Naval Postgraduate School

Computer Science Department

Monterey, CA 93943 50

Prof. Ted Lewis, CS/Lt
Naval Postgraduate School

Computer Science Department
Monterey, CA 93943 2

LTCOL Francius Suwono

JL. Sengkuni No. 2, Dirgantara I11

Halim PK AFB, Jakarta 13510

Indonesia 2

8 SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

